

© 2018 Journal of Strength and Conditioning Research. This is an author produced version of a paper published in the Journal of Strength and Conditioning Research. Uploaded in accordance with the publisher's self- archiving policy.

Williams, N., Russell, M., Cook, C.J. and Kilduff, L.P. (2018). The Effect of Ischemic Preconditioning on Maximal Swimming Performance. *Journal of Strength and Conditioning Research.* Published online ahead of print 30 Jan 2018.

1 Title: The effect of ischemic preconditioning on maximal swimming performance 2 Williams, N.^{a, b} Russell, M.^c, Cook, C.J.^d, Kilduff, L.P.^{a, d} 3 Authors: 4 5 ^a Applied Sports Technology Exercise and Medicine Research Centre (A-STEM), Swansea 6 University, Swansea, United Kingdom ^b Sport Wales, Welsh Institute of Sport, Sophia Gardens, Cardiff, United Kingdom 7 ^c School of Social and Health Sciences, Leeds Trinity University, Leeds, United Kingdom 8 9 ^dWelsh Institute for Performance Solutions 10 11 12 Corresponding Author: Liam P.Kilduff 13 L.Kilduff@swansea.ac.uk 14 15 Article type: Original investigation

2

3 The effect of ischemic preconditioning (IPC) on swimming performance was examined. Using a 4 randomized, crossover design, National-and International-level swimmers (n=20; 14 males, 6 5 females) participated in three trials (Con, IPC-2h, IPC-24h). Lower-body IPC (4 x 5 min bi-lateral 6 blood-flow restriction at 160-228 mmHg, and 5 min reperfusion) was used 2- (IPC-2h) or 24-h (IPC-7 24h) before a self-selected (100 m, n=15; 200 m, n=5) swimming time-trial (TT). The Con trial used 8 a sham intervention (15 mmHg) 2h prior to exercise. All trials required a 40-min standardized pre-9 competition swimming warm-up (followed by 20-min rest; replicating pre-competition call room 10 procedures) 1h before TT. Capillary blood (pH, blood gases and lactate concentrations) was taken 11 immediately pre-and post-IPC, pre-TT and post-TT. No effects on TT for 100 m (P=0.995; IPC-2h: 12 64.94±8.33 s; IPC-24h: 64.67±8.50 s; Con: 64.94± 8.24 s), 200 m (P=0.405; IPC-2h: 127.70±10.66 s; 13 IPC-24h: 129.26±12.99 s; Con: 130.19±10.27 s) or combined total time (IPC-2h: 84.27±31.52 s; IPC-24h: 79.87±29.72 s; Con: 80.55±31.35 s) were observed following IPC. Base excess (IPC-2h: -14 13.37±8.90 mmol·L⁻¹; Con: -13.35±7.07 mmol·L⁻¹; IPC-24h: -16.53±4.65 mmol·L⁻¹), pH (0.22±0.08; 15 all conditions), bicarbonate (IPC-2h: -11.66±3.52 mmol·L⁻¹; Con: -11.62±5.59 mmol·L⁻¹; IPC-24h: -16 8.47±9.02 mmol·L⁻¹), total carbon dioxide (IPC-2h: -12.90±3.92 mmol·L⁻¹; Con: -11.55±7.61 mmol·L⁻¹ 17 ¹; IPC-24h: 9.90 ± 8.40 mmol·L⁻¹), percentage oxygen saturation (IPC-2h: -0.16±1.86%; Con: 18 19 $+0.20\pm1.93\%$; IPC-24h: $+0.47\pm2.10\%$) and blood lactate (IPC-2h: $+12.87\pm3.62$ mmol·L⁻¹; Con: +12.41±4.02 mmol·L⁻¹; IPC-24h: +13.27±3.81 mmol·L⁻¹) were influenced by swimming TT 20 21 (P<0.001), but not condition (all P>0.05). No effect of IPC was seen when applied 2- or 24-h before 22 swimming TT on any indices of performance or physiological measures recorded. 23

25

24

Key words: Time-trial, lactate, blood gases, ergogenic aid

26 INTRODUCTION

27

28 During international swimming events athletes are required to perform two to three maximal efforts 29 following months or even years of training and preparation, with marginal differences of <0.5%30 separating medal and non-medal positions (e.g. difference between sixth and third place in the men's 31 and women's 100 m at World Championships; FINA, World Championship results 2017 - 8). In 32 addition to the benefits of training, previous research has shown the importance of competition warm-33 up intensity (24), timing of warm-up (36) and use of active heating and land-based activation 34 exercises (21, 22) as competition-day strategies to improve subsequent swimming performance. 35 Ischemic preconditioning (IPC), involving cycles of ischemia and reperfusion achieved through the 36 application of cuffs to the arms or thighs (11), has also been reported to improve indices of athletic 37 performance when used between 15 mins and 8h before performance assessments (12).

38

The benefits of IPC to improve athletic performance have been previously observed in time to 39 40 exhaustion (e.g. 9), anaerobic specific performance tests (e.g. 14) and repeated sprint ability (e.g. 26). 41 It has been reported that IPC induces acute vascular adaptations, resulting in local vasodilation and 42 enhanced blood flow (34). Consequently, enhanced functional sympatholysis may speed and increase 43 oxygen extraction by means of matching demand with supply (13), facilitating an increased aerobic 44 contribution during subsequent exercise. Reports suggest that IPC can cause a faster uptake of acetyl 45 coenzyme A (acetyl-CoA) by mitochondria thus maintaining lactate accumulation at a metabolically 46 acceptable level due to greater contribution of aerobically generated adenosine triphosphate (ATP) for 47 exercise (14). Recruitment of higher order motor units via enhanced central motor efferent command 48 also results from IPC (4), allowing for exercise to be completed beyond the individual's critical 49 threshold by increasing or maintaining the rate of force development and improving subsequent 50 performance.

52 However, only one study (31) relating to sports performance has differentiated between the 53 observed early and late phase of IPC reported within the clinical literature, implementing IPC 24h 54 prior to a 5 km running time trial (TT). Research suggests that there are two phases resulting from 55 IPC; the early phase which begins soon after reperfusion and lasts 3-4h, whereas the late phase 56 starts 12-24h after IPC (16) and last 48-96h (27, 33). The release of endogenous substances is 57 thought to stimulate post-translational modifications in proteins within the early phase, whereas in the late phase this leads to synthesis of new proteins and altered gene expression (34). Accordingly, 58 59 owing to the timing of pre-competition practices and regulations in athletic competitions (e.g., the use of pre-competition call-rooms within 20 min of competition starting), the late phase of IPC may 60 61 offer another practical option, to coincide with competition timings to further optimize swimming 62 performance on the day of competition.

63

64 With a specific emphasis on swimming performance, IPC may be beneficial for 100 to 400 m 65 swimming performance due to the resultant increase in contribution of ATP generated from the aerobic system (28). To date, four studies (7, 14, 17, 20) have identified a positive effect of 66 67 implementing IPC prior to swimming performance. For example, Jean-St-Michel et al. (14) reported 68 that five min of ischemia followed by five min of reperfusion, repeated for four cycles, implemented 69 45 min prior to 100 m swimming TT improved personal best swimming times by 1.1%. Most 70 recently, Lisbôa et al. (17) applied IPC 1h, 2h and 8h preceding a 50 m TT performance, with 71 performance improvements of 1.0% and 1.2% in 2h and 8h conditions, respectively. The previous research relating to IPC and swimming performance has investigated the effects of the early phase of 72 73 IPC on performance as application has been <12h prior to performance. However, for short duration 74 events (i.e. 10-90 s), a recent meta-analysis showed that a longer duration between IPC and exercise 75 resulted in a higher effect size; suggesting that IPC may be dependent on the timing of the 76 preconditioning strategy relative to the start of subsequent performance (30). Research is yet to 77 investigate if the delayed phase of IPC can enhance swimming performance when applied at least 12h 78 prior to competition, a strategy which may be attractive for coaches and swimmers.

Consequently, the purpose of this study was to investigate the impact of IPC on swimming TTperformance 2h (early phase) and 24h (late phase) after eliciting IPC in competitive swimmers.

81

82 METHOD

83 EXPERIMENTAL APPROACH TO THE PROBLEM

Twenty National and International-level swimmers participated in a randomized, crossover design 84 85 that involved three sessions (Con, IPC-2h, IPC-24h) separated by seven days. Timing of IPC 86 completed in conditions were implemented in line with previous research complete by Seeger et al. 87 (31) and Lisbôa et al. (17). Occlusion cuffs were applied bi-laterally at the most proximal point of each thigh and intermittently inflated to an individualized cuff pressure determined from thigh girth 88 89 and resting blood pressure for a total of 40 min in IPC-2h and IPC-24h. In Con, cuffs were applied 90 for the same duration (total 40 min), however cuff pressure was inflated to 15 mmHg. A self-selected 91 (100 or 200 m) swimming TT (assessing total time, 50 m split times, stroke count; SC, and stroke 92 rate; SR, time underwater off starts and turns) followed intervention administration and physiological 93 markers (pH, blood gases and lactate concentrations) were assessed at pre-IPC, post-IPC, pre-TT and 94 post-TT.

95

96 SUBJECTS

Following ethical approval from Swansea University ethics committee, twenty (6 females, 14 males)
National- and International-level swimmers (age; 20±2 y, mass; 71.1±9.6 kg, stature; 178.4±9.6 cm,
Training experience; 9.6±2.7 y) participated in the study. All subjects had qualified for, and
competed at British swimming National competitions. Subjects were informed of the experimental
procedures, the purpose and possible risks associated with the study, and provided written informed
consent before participation.

103

104 **PROCEDURES**

105 After familiarization, participants were required to attend the testing venue on three occasions (Con,

106 IPC-2h, IPC-24h) in a randomized order.

Main trials were performed in an enclosed 50 m swimming pool within the subject's normal training environment. To minimize the effects of biological rhythms, the timing of measurements was consistent between trials. To control for varying levels of weekly fatigue, testing was conducted on the same day of the week in a stable, maintenance phase of training. Subjects were required to refrain from alcohol and intense physical exercise in the 24h preceding trials and between IPC and swimming TT performance.

113

114 On arrival for main trials, subjects were required to rest for 10 min to allow for resting blood pressure 115 to be recorded (Omron Healthcare, Europe; systolic >140 mmHg and/or diastolic >90 mmHg 116 precluded further study involvement). Once blood pressure was recorded, thigh girth was measured for determination of cuff pressure and a capillary blood sample was taken. Occlusion cuffs were then 117 118 applied to the most proximal point of the thighs, with subjects assuming a supine position. The cuff 119 (10 cm) contained a pneumatic bag along its inner surface that was connected to a pressure gauge and manually inflated to either 15 mmHg (Con) or an individualized cuff pressure (IPC-2h, IPC-24h) for a 120 121 total of 40 min consisting of four cycles of five min occlusion and five min reperfusion. The 122 individualized cuff pressures were calculated from Loenneke et al. (18) with values ranging from 160 to 228 mmHg. Cuff pressure was 15 mmHg in the Con condition; based on previous research 123 124 showing that 10-20 mmHg (e.g. 1, 14, 26) caused no alteration to the arterial inflow but allowed 125 increased control over the placebo effect as cuffs were worn in both conditions.

126

127 Following the completion of the IPC protocol, subjects rested accordingly for 24h or 2h; intense 128 physical activity was restricted during the 24h and all subjects arrived at the swimming pool and 129 rested for 3h prior to TT regardless of the condition, cuffs were applied during this period for IPC-2h 130 and Con. A standardized race swimming warm up (40-min) was performed 1h prior to a swimming 131 TT and a 20-min post-warm-up rest period at the swimming pool replicated pre-competition call room 132 requirements. This was immediately followed by a maximal swimming TT (100 m: *n*=15, 200 m: 133 n=5), completed on the subjects' chosen stroke, in accordance with FINA rules. Subjects completed 134 the TT individually, starting from a block and taking off after an audible starting signal.

135 Rating of perceived exertion was recorded using the Borg (2) scale on completion of the race. From 136 the TT, SR, SC, 50 m split times, time underwater off the start and turns and total time were 137 calculated retrospectively from video recordings. Equation 1 was used to determine SR; for each 25 138 m of the TT SR was calculated, the mean \pm SD was then calculated for each 50 m. To ensure 139 acceptable reliability of the SR measurement, intra-observer tests were completed. The analyst 140 viewed two randomly selected TT performances ten times over a two-week period under the same 141 conditions. The coefficient of variation (CV) was calculated to identify the measurement error; this 142 resulted in a low, acceptable percentage of error (CV = 0.2%).

143

144 Equation 1: Stroke rate = (Number of complete strokes over 25 m x 60)

145

(Time of hand entry 1 - time of hand entry 2)

Where hand entry 1 is the first-hand entry at the start of 25 m and hand entry 2 is the hand entry at theend of 25 m, recorded in seconds.

148

A capillary blood sample was taken pre-IPC, post-IPC, pre-TT and post-TT to measure blood lactate, 149 150 pH, percentage of oxygen saturation (sO₂%), partial pressure of oxygen (PO₂), partial pressure of carbon dioxide (PCO₂), total carbon dioxide (TCO₂), bicarbonate (HCO₃) and Base Excess. This was 151 152 analyzed using a portable analyser (ISTAT 1; 300G) and associated cartridges (CG4+; Abbott, point 153 of care testing, Arbroath, UK). Prior to data collection the analyzer was calibrated according to the manufacturer's specifications and cartridges were stored as per manufacturer's instructions (2-8°C) 154 and removed to room temperature ~5 min prior to use. The capillary blood sample was immediately 155 156 expelled from the capillary tube into the sample well of the cartridge. Blood gases and pH were analyzed using these methods which have previously been compared (35) against two auto-calibrated 157 158 analyzers (r >0.993). Dascombe et al. (5) also confirmed intra-test reliability of the analyzer; intra-159 class correlation coefficients (ICC) for all analytes were observed to be strong following maximal 160 intensity exercise (ICC = 0.77-0.95; where 0.7-0.9 deemed a strong correlation) and technical error of measurement (TEM) <15% was deemed acceptable (pH; 0.24%, blood lactate; 3.12%, all other
measured blood gas parameters 2.02-8.85%).

163

164 STATISTICAL ANALYSES

All data is presented as mean \pm standard deviation (SD). Following confirmation of parametric assumptions, repeated measures multivariate analysis of variance (MANOVA) with Bonferroni adjustment assessed between-trial differences for variables with multiple time points per trial (i.e. blood lactate, pH, sO₂%, PO₂, PCO₂, HCO₃ and Base Excess). One-way ANOVA assessed betweentrial differences for all performance variables from the swimming TT and RPE recorded post-TT. Statistical analyses were carried out using SPSS version 22.0 (SPSS Chicago, IL) with significance being accepted at P \leq 0.05.

172

173 RESULTS

174

Exercise significantly affected blood parameters; following swimming TT, pH decreased by 175 0.22 ± 0.08 in all conditions (P<0.001; $\eta^2 = 0.866$) (Figure 1). Blood lactate increased pre-to post-TT 176 $(P<0.001; \eta^2 = 0.923)$ by 12.87±3.62 mmol·L⁻¹, 12.41±4.02 mmol·L⁻¹ and 13.27±3.81 mmol·L⁻¹ in 177 IPC-2h, Con and IPC-24h, respectively (Figure 1). Base excess (IPC-2h: -13.37±8.90 mmol·L⁻¹; Con: 178 $-13.35\pm7.07 \text{ mmol}\cdot\text{L}^{-1}$; IPC-24h: $-16.53\pm4.65 \text{ mmol}\cdot\text{L}^{-1}$; P<0.001; $\eta^2 = 0.857$), HCO₃ (IPC-2h: -179 11.66±3.52 mmol·L⁻¹; Con: -11.62±5.59 mmol·L⁻¹; IPC-24h: -8.47±9.02 mmol·L⁻¹; P<0.001; $\eta^2 =$ 180 0.849), TCO₂ (IPC-2h: -12.90±3.92 mmol·L⁻¹; Con: -11.55±7.61 mmol·L⁻¹; IPC-24h: 9.90±8.40 181 mmol·L⁻¹; P<0.001; $\eta^2 = 0.939$) and sO₂% (IPC-2h: -0.16±1.86 %; Con: +0.20±1.93 %; IPC-24h: 182 +0.47±2.10 %; P<0.001; $\eta^2 = 0.130$) were significantly different pre-TT to post-TT. However, there 183 184 were no differences between trials in any of the blood parameters (P>0.05).

- 185
- 186 ***** INSERT FIGURE 1 NEAR HERE *****
- 187

188 Trial did not affect performance for 100 m (P=0.995; IPC-2h: 64.94±8.33 s; IPC-24h: 64.67±8.50 s; 189 Con: 64.94± 8.24 s), 200 m (P=0.405; IPC-2h: 127.70±10.66 s; IPC-24h: 129.26±12.99 s; Con: 190 130.19±10.27) or combined total time (IPC-2h: 84.27±31.52 s; IPC-24h: 79.87±29.72 s; Con: 191 80.55±31.35 s). No significant effects between conditions for any of the performance variables were 192 observed; being, total time (P=0.723), split time for the first 50 m (P=0.968), split time for the second 193 50 m (P=0.874), start time (P=0.817), turn time at 50 m (P=0.924), SC for first 50 m (P=0.559), SC 194 for second 50 m (P=0.570), SR for first 50 m (P=0.726), SR for second 50 m (P=0.988) and RPE 195 (P=0.723) (Table 1).

196

197

***** INSERT TABLE 1 NEAR HERE *****

198 DISCUSSION

199

In this study IPC did not affect 100 or 200 m swimming performance in National-level swimmers when applied 2h or 24h prior to performance assessment. These findings, particularly for IPC-2h, oppose previous research that found IPC applied acutely improved subsequent swimming performance (7, 14, 17, 20). Consistent with previous research (31), no change in swimming performance was identified when IPC was applied 24h before the TT. Likewise, no differences were identified in physiological markers following IPC-2h or IPC-24h. Therefore, IPC applied 2h or 24h had no influence, either positive or negative, on swimming performance or physiological markers.

207 For short duration events (i.e. 10-90 s), a recent meta-analysis showed that a longer duration between 208 IPC and exercise resulted in a higher effect size; suggesting that IPC may be dependent on the timing 209 of the preconditioning strategy relative to the start of subsequent performance (30). Previous research 210 in swimming has implemented IPC between 10 min and 8h (7, 14, 17, 20) before performance 211 assessment and found beneficial effects; findings which contradict those reported here when IPC was 212 applied 2h before exercise. Several methodological differences between the present study and 213 previous literature may explain this lack of agreement in findings. Specifically, there is little 214 consensus regarding optimal cuff pressures used in IPC as a range of pressures have been reported 215 (i.e., 200-230 mmHg or 15-50>SBP) which are universally applied across all individuals within 216 studies. A standardized cuff pressure may not cause the same percentage of blood flow restriction in 217 every individual, especially considering the volume and type of tissue surrounding the blood vessels 218 which may influence the pressure exerted on the vasculature (19). Therefore, the percentage of blood 219 flow restriction may affect the success of IPC as a pre-competition strategy (10). Recent research by 220 Loenneke et al. (18) recommended the use of individualized cuff pressure calculated from thigh girth 221 and resting blood pressure, which was adopted in the current study. However, individual blood flow 222 restriction was not confirmed using a Doppler due to practicality, which offers a limitation to the 223 current study as blood flow restriction was calculated in alignment with results from previous research 224 (18), rather than according to a measured pressure. A protocol to individualise cuff pressure needs to 225 be determined, identifying the differences between a standard cuff pressures and the use of thigh girth 226 and blood pressure to calculate individual pressures in comparison to Doppler assessment. The 227 results of these three methods to determine cuff pressure need to be identified and the resultant effect 228 on performance tested to establish recommendations for practical use.

229

230 To explain the current results, another methodological difference should be considered regarding the 231 location of the cuff, with application previously reported on the lower or upper body. The present 232 study applied occlusion cuffs to the thighs which contrasts previous research in swimming whereby 233 cuffs were applied to the upper body (7, 14, 17, 20). Although limited research still exists on the 234 working mechanism of IPC and athletic performance, it has been suggested that IPC induces a 235 systemic change in blood flow through a change in sympathetic activity. Due to the nature of 236 swimming and controlled breathing, which can result in exercise induced arterial hypoxemia, 237 decreased pH (3, 32) and consequently a significant contributor of fatigue (25), a systemic increase in 238 blood flow and oxygen delivery could be speculated to improve performance, reducing hypoxemia 239 and metabolic acidosis. However, in the current study no differences were identified between 240 conditions in the physiological measures. Alternative research has suggested that IPC may also cause 241 local changes in the muscle at the site of the cuff (e.g. increase oxygen uptake or change in 242 mitochondrial activity) which may contribute to an increase muscle oxygenation (13, 15, 29).

In swimming, the contribution of propulsive force is approximately 90% for the upper extremities (6, 23), therefore, the local changes achieved by application of the cuffs to the upper limbs, may increase effectiveness of limb IPC to improve swimming performance. In comparison to previous results applying cuffs to the thighs to induce a systemic response, this may help to explain the inconsistency in the current results, highlighting this as an area warranting further investigation to determine the impact of systemic versus local blood flow restriction on athletic performance.

249 To date, one study has examined the use of IPC applied 24h prior to performance to determine if the 250 late phase of IPC, originally used in a clinical setting, may also improve athletic performance. The 251 current study replicated research completed by Seeger et al. (31) but within swimming, with the only 252 other methodological difference being individualizing of cuff pressures. Similarly, no difference in 253 performance time between conditions was identified. However, results from the current study were 254 not consistent with previous research investigating IPC in swimming as previously a benefit has been 255 identified in the early phase (10 min - 2h) within the literature which was not consistent in our study. 256 Therefore, methodological differences could have influenced these findings as stated above regarding 257 cuff location, consequently IPC applied 24h prior to performance should be further investigated in 258 swimming while ensuring that cuffs are applied to the upper body.

259

260 In conclusion, the current study demonstrated swimming TT performance of 100 or 200 m was not 261 influenced when it was preceded 2h or 24h by four cycles of IPC, at an individualized cuff pressure. 262 Speculatively, this may have been due to the difference in cuff placement on the lower limbs as 263 opposed to upper limbs as in previous IPC and swimming research. Therefore, the use of IPC 24h 264 prior to swimming TT performance should be investigated with cuffs applied to the upper limbs to 265 identify if the late phase of IPC can also improve performance, as this would have greater practical 266 application completing the IPC protocol 24h before competition rather than in close proximity to the 267 start of an athletic event.

269 PRACTICAL APPLICATIONS

270

271 Despite this study concluding swimming performance was not influenced by IPC applied at 2h or 24h, 272 there are several practical points of relevance for application in sport. These results provide baseline 273 data for the use of IPC in swimming when cuffs are applied to the thighs, identifying that this strategy 274 had no detrimental effect on physiological responses. Most prominently, the combination of previous 275 research and the current study suggest recommendations for application of the cuffs to the upper body 276 to improve swimming performance. 277 **ACKNOWLEDGEMENTS** 278 None to declare. There was no financial support for this study. This research did not receive any 279 specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The results 280 of the present study do not constitute endorsement by the NSCA. 281 282 REFERENCES 1. Bailey, T.G. et al. Effect of ischemic preconditioning on lactate accumulation and running 283 284 performance. Medicine and Science in Sports and Exercise, 44(11), 2084–2089, 2012 2. Borg, G. Psychophysiological bases of perceived exertion. Medicine and Science in Sports 285 286 and Exercise, 14(5), 377-381, 1982. 287 3. Craig, A.B. Breath holding during the turn in competitive swimming. *Medicine And Science* 288 In Sports And Exercise, 18(4), 402–7, 1986. 289 4. Crisafulli, A. et al. Ischemic preconditioning of the muscle improves maximal exercise 290 performance but not maximal oxygen uptake in humans. Journal of Applied Physiology, 291 111(2), 530–536, 2011 292 5. Dascombe, B.J. et al. The reliability of the i-STAT clinical portable analyser. Journal of 293 *Science and Medicine in Sport*, 10(3), 135–140, 2007. 294 6. Deschodt, J. V., Arsac, L.M. & Rouard, A.H. Relative contribution of arms and legs in 295 humans to propulsion in 25-m sprint front-crawl swimming. European Journal of Applied 296 Physiology and Occupational Physiology, 80(3), 192–199, 1999.

297	7.	Ferreira, T.N. et al. Ischemic Preconditioning and Repeated Sprint Swimming: A Placebo and
298		Nocebo Study. Medicine and Science in Sports and Exercise, 48(10), 1967–1975, 2016.
299	8.	FINA World Championship results 2017 - http://www.fina.org/event/17th-fina-world-
300		championships/results
301	9.	De Groot, P.C.E. et al. Ischemic preconditioning improves maximal performance in humans.
302		European Journal of Applied Physiology, 108(1), 141–146, 2010.
303	10.	Hargens, A.R. et al. Local compression patterns beneath pneumatic tourniquets applied to
304		arms and thighs of human cadavera. Journal of Orthopaedic Research, 5(2), 247–252, 1987.
305	11.	Heusch, G. et al. Remote ischemic conditioning. Journal of the American College of
306		Cardiology, 65(2), 177–195, 2015.
307	12.	Horiuchi, M. Ischemic preconditioning : Potential impact on exercise performance and
308		underlying mechanisms. The Journal of Sports Medicine and Physical Fitness, 6(1), 15-23,
309		2017.
310	13.	Horiuchi, M., Endo, J. & Thijssen, D.H.J. Impact of ischemic preconditioning on functional
311		sympatholysis during handgrip exercise in humans. Physiological Reports, 3(2), e12304-
312		e12304, 2015.
313	14.	Jean-St-Michel, E. et al. Remote Preconditioning Improves Maximal Performance in Highly
314		Trained Athletes. Medicine & Science in Sports & Exercise, 43(7), 1280–1286, 2011.
315	15.	Kjeld, T. et al. Ischemic preconditioning of one forearm enhances static and dynamic apnea.
316		Medicine and Science in Sports and Exercise, 46(1), 151–155, 2014.
317	16.	Kuzuya, T. et al. Delayed Effects of Sublethal Ischemia on the Acquisition of Tolerance to
318		Ischemia. Circulation Research, 72(6), 1293–1299, 1993.
319	17.	Lisbôa, F.D. et al. The Time Dependence of the Effect of Ischemic Preconditioning on
320		Successive Sprint Swimming Performance. Journal of Science and Medicine in Sport, 20(5),
321		507-511, 2017.
322	18.	Loenneke, J.P., Allen, K.M., et al. Blood flow restriction in the upper and lower limbs is
323		predicted by limb circumference and systolic blood pressure. European Journal of Applied
324		Physiology, 115(2), 397–405, 2015.

Copyright $©~2018\,$ National Strength and Conditioning Association

325	19.	Loenneke, J.P. et al. Effects of cuff width on arterial occlusion: implications for blood flow
326		restricted exercise. European Journal of Applied Physiology, 112(8), 2903–2912, 2012.
327	20.	Marocolo, M. et al. Are the Beneficial Effects of Ischemic Preconditioning on Performance
328		Partly a Placebo Effect? International Journal of Sports Medicine, 36(10), 822-825, 2015.
329	21.	McGowan, C.J., Pyne, D.B., et al. Elite sprint swimming performance is enhanced by
330		completion of additional warm-up activities. Journal of Sports Sciences, 24(2), 1–7, 2016.
331	22.	McGowan, C.J., Thompson, K.G., et al. Heated jackets and dryland-based activation
332		exercises used as additional warm-ups during transition enhance sprint swimming
333		performance. Journal of Science and Medicine in Sport, 19(4), 354–358, 2016.
334	23.	Morouço, P. et al. Relationship between tethered forces and the four swimming techniques
335		performance. Journal of Applied Biomechanics, 27(2), 161–169, 2011.
336	24.	Neiva, H.P. et al. Warm-up and performance in competitive swimming. Sports Medicine,
337		44(3), 319–330, 2014.
338	25.	Noakes, T.D. Physiological models to understand exercise fatigue and the adaptations that
339		predict or enhance athletic performance. Scandinavian Journal of Medicine and Science in
340		Sports, 10(3), 123–145, 2000.
341	26.	Patterson, S.D. et al. The effect of ischemic preconditioning on repeated sprint cycling
342		performance. Medicine and Science in Sports and Exercise, 47(8), 1652–1658, 2015.
343	27.	Pell, T.J. et al. Renal ischemia preconditions myocardium: role of adenosine receptors and
344		ATP-sensitive potassium channels. The American Journal of Physiology, 275(5 Pt 2), H1542-
345		H1547, 1998.
346	28.	Rodriguez, F. & Mader, A. Energy metabolism during 400 and 100-m crawl swimming:
347		computer simulation based on free swimming measurement. Biomechanics and Medecine in
348		Swimming VIII, (January 2003), 373–390, 2003.
349	29.	Saito, T. et al. Ischemic preconditioning improves oxygenation of exercising muscle in vivo.
350		Journal of Surgical Research, 120(1), 111–118, 2004.
351	30.	Salvador, A et al. Ischemic preconditioning and exercise performance: A systematic review
352		and meta-analysis. International Journal of Sports Physiology and Performance, 11(1), 4-14,

Copyright © 2018 National Strength and Conditioning Association

353

2016.

- 354 31. Seeger, J.P.H. et al. Is Delayed Ischemic Preconditioning As Effective on Running
 355 Performance During a 5-Km Time Trial As Acute Ipc? *Journal of Science and Medicine in*356 *Sport*, 20(2), 208–212, 2017.
- 357 32. Sharp, R.L., Williams, D.J. & Bevan, L. Effects of controlled frequency breathing during
 asse exercise on blood gases and acid-base balance. *International Journal of Sports Medicine*,
 12(1), 62–5, 1991.
- 360 33. Singh, D. & Chopra, K. Evidence of the role of angiotensin AT(1) receptors in remote renal
 preconditioning of myocardium. *Methods and Findings in Experimental and Clinical*
- **362** *Pharmacology*, 26(2), 117–22, 2004.
- 363 34. Tapuria, N. et al. Remote Ischemic Preconditioning: A Novel Protective Method From
 364 Ischemia Reperfusion Injury-A Review. *Journal of Surgical Research*, 150(2), 304–330,
 365 2008.
- 366 35. Verwaerde, P. et al. The accuracy of the i-STAT portable analyser for measuring blood gases
 367 and pH in whole-blood samples from dogs. *Research in Veterinary Science*, 73(1), 71–75,
- **368** 2002.
- 369 36. West, D.J. et al. Influence of post-warm-up recovery time on swim performance in
- 370 international swimmers. *Journal of Science and Medicine in Sport*, 16(2), 172–176, 2013.
- 371
- 372 FIGURES AND TABLES
- 373
- Figure 1: Change in blood markers from pre-ischemic preconditioning (IPC) to post-IPC and Pre-time trial (TT) to post-TT

376

377 Table 1: Performance variables from the swimming time trial (100 and 200 m combined) for the three378 conditions

Condition	SC 50	SC 100	SR 50 (SPM)	SR 100 (SPM)	Start (s)	Turn 50 (s)
Con	19.3±2.4	22.2±3.2	45.3±8.0	42.5±7.1	4.9±1.4	4.2±1.6
Confidence Interval	18.1-20.5	20.6-23.8	41.3-49.3	39.0-46.0	4.2-5.5	3.4-5.0
IPC-2h	18.8±2.6	21.3 ±3.2	43.9±8.1	42.3±7.4	4.9±1.4	4.2±1.7
Confidence Interval	17.5-20.0	19.7-22.8	40.1-47.7	38.9-45.8	4.3-5.6	3.4-5.0
IPC-24h	18.4±2.6	21.1±3.7	43.4±8.7	42.1±6.3	5.1±1.1	4.4±1.7
Confidence Interval	17.1-19.7	19.2-23.0	38.9-47.8	38.8-45.5	4.6-5.7	3.5-5.3

*SC50 = stroke count for the first 50 m, SC 100 = stroke count for the second 50 m, SR 50 = stroke rate for first 50 m, SR 100 = stroke rate for second 50 m, start = time from dive start to first stroke, Turn 50 = turn time at 50 m. Confidence intervals reported at ninety-five-percent.

Condition	SC 50	SC 100	SR 50 (SPM)	SR 100 (SPM)	Start (s)	Turn 50 (s)
Con	19.3±2.4	22.2±3.2	45.3±8.0	42.5±7.1	4.9±1.4	4.2±1.6
Confidence Interval	18.1-20.5	20.6-23.8	41.3-49.3	39.0-46.0	4.2-5.5	3.4-5.0
IPC-2h	18.8±2.6	21.3 ±3.2	43.9±8.1	42.3±7.4	4.9±1.4	4.2±1.7
Confidence Interval	17.5-20.0	19.7-22.8	40.1-47.7	38.9-45.8	4.3-5.6	3.4-5.0
IPC-24h	18.4±2.6	21.1±3.7	43.4±8.7	42.1±6.3	5.1±1.1	4.4±1.7
Confidence Interval	17.1-19.7	19.2-23.0	38.9-47.8	38.8-45.5	4.6-5.7	3.5-5.3

*SC50 = stroke count for the first 50 m, SC 100 = stroke count for the second 50 m, SR 50 = stroke rate for first 50 m, SR 100 = stroke rate for second 50 m, start = time from dive start to first stroke, Turn 50 = turn time at 50 m. Confidence intervals reported at ninety-five-percent.

Copyright © 2018 National Strength and Conditioning Association