TY - JOUR
T1 - Heterogeneous sensors-based feature optimisation and deep learning for tool wear prediction
AU - Zhang, Xiaoyang
AU - Wang, Sheng
AU - Li, Weidong
AU - Lu, Xin
PY - 2021/4/12
Y1 - 2021/4/12
N2 - During machining processes, accurate prediction of cutting tool wear is prominent to prevent ineffective tool utilisation and significant resource waste. Tool wear conditions and progression involve complex physical mechanisms, and a promising approach is to deploy heterogeneous sensors and design a deep learning algorithm to conduct real-time tool wear monitoring and precious prediction. To tackle the challenge of deep learning algorithms in processing complex signals from heterogeneous sensors, in this paper, a systematic methodology is designed to combine signal de-noising, feature extraction, feature optimisation and deep learning-based prediction. In more details, the methodology is comprised of the following three steps: (i) signal de-noising is carried out by a designed Hampel filter-based method to eradicate random spikes and outliers in the signals for raw data quality enhancement; (ii) features extracted from heterogeneous sensors in the time and frequency domains are optimised using designed recursive feature elimination and cross-validation (RFECV)-based and Isomap-based methods; (iii) a convolutional neural networks (CNN) algorithm is devised to process the optimised features to implement tool wear prediction. In this paper, a case study showed that 80% features were reduced from the originally extracted features and 86% prediction accuracy was achieved based on the developed methodology. The presented methodology was benchmarked with several main-stream methodologies, and the superior performance of the methodology over those comparative methodologies in terms of prediction accuracy was exhibited.
AB - During machining processes, accurate prediction of cutting tool wear is prominent to prevent ineffective tool utilisation and significant resource waste. Tool wear conditions and progression involve complex physical mechanisms, and a promising approach is to deploy heterogeneous sensors and design a deep learning algorithm to conduct real-time tool wear monitoring and precious prediction. To tackle the challenge of deep learning algorithms in processing complex signals from heterogeneous sensors, in this paper, a systematic methodology is designed to combine signal de-noising, feature extraction, feature optimisation and deep learning-based prediction. In more details, the methodology is comprised of the following three steps: (i) signal de-noising is carried out by a designed Hampel filter-based method to eradicate random spikes and outliers in the signals for raw data quality enhancement; (ii) features extracted from heterogeneous sensors in the time and frequency domains are optimised using designed recursive feature elimination and cross-validation (RFECV)-based and Isomap-based methods; (iii) a convolutional neural networks (CNN) algorithm is devised to process the optimised features to implement tool wear prediction. In this paper, a case study showed that 80% features were reduced from the originally extracted features and 86% prediction accuracy was achieved based on the developed methodology. The presented methodology was benchmarked with several main-stream methodologies, and the superior performance of the methodology over those comparative methodologies in terms of prediction accuracy was exhibited.
U2 - 10.1007/s00170-021-07021-6
DO - 10.1007/s00170-021-07021-6
M3 - Article
SN - 0268-3768
VL - 114
SP - 2651
EP - 2675
JO - The International Journal of Advanced Manufacturing Technology
JF - The International Journal of Advanced Manufacturing Technology
ER -