TY - CHAP
T1 - Fog computing and convolutional neural network enabled prognosis for machining process optimization
AU - Liang, Yuchen
AU - Li, Weidong
AU - Lu, Xin
AU - Wang, Sheng
PY - 2021/2/21
Y1 - 2021/2/21
N2 - Cloud enabled prognosis systems have been increasingly adopted by manufacturing industries. The effectiveness of the cloud systems is, however, crippled by the high latency of data transfer between shop floors and the cloud. To overcome the limitation, this chapter presents an innovative fog enabled prognosis system for machining process optimization. The system functions include: (1) dynamic prognosis - Convolutional Neural Network (CNN) based prognosis is implemented to detect potential faults from customized machining processes. Pre-processing mechanisms of the CNN are designed for partitioning and de-noising monitored signals to strengthen the performance of the system in practical manufacturing situations; (2) an innovative fog enabled prognosis architecture for machining process optimization—it consists of a terminal layer, a fog layer and a cloud layer to minimize data traffic and improve system efficiency. Under the architecture, monitored signals during machining collected on the terminal layer are processed using the trained CNN deployed on the fog layer to efficiently detect abnormal situations. Intensive computing activities like training of the CNN and system re-optimization responding to detected faults are carried out dynamically on the cloud layer to leverage its computation powers. The system was validated in a UK machining company. With the system deployment, the efficiency of energy and production was improved for 29.25% and 16.50% on average. In comparison with a cloud system, this fog system achieved 70.26% reduction in the bandwidth requirement between shop floors and cloud, and 47.02% reduction in data transfer time. This research, sponsored by EU projects, demonstrates that industrial artificial intelligence can facilitate smart manufacturing practices effectively.
AB - Cloud enabled prognosis systems have been increasingly adopted by manufacturing industries. The effectiveness of the cloud systems is, however, crippled by the high latency of data transfer between shop floors and the cloud. To overcome the limitation, this chapter presents an innovative fog enabled prognosis system for machining process optimization. The system functions include: (1) dynamic prognosis - Convolutional Neural Network (CNN) based prognosis is implemented to detect potential faults from customized machining processes. Pre-processing mechanisms of the CNN are designed for partitioning and de-noising monitored signals to strengthen the performance of the system in practical manufacturing situations; (2) an innovative fog enabled prognosis architecture for machining process optimization—it consists of a terminal layer, a fog layer and a cloud layer to minimize data traffic and improve system efficiency. Under the architecture, monitored signals during machining collected on the terminal layer are processed using the trained CNN deployed on the fog layer to efficiently detect abnormal situations. Intensive computing activities like training of the CNN and system re-optimization responding to detected faults are carried out dynamically on the cloud layer to leverage its computation powers. The system was validated in a UK machining company. With the system deployment, the efficiency of energy and production was improved for 29.25% and 16.50% on average. In comparison with a cloud system, this fog system achieved 70.26% reduction in the bandwidth requirement between shop floors and cloud, and 47.02% reduction in data transfer time. This research, sponsored by EU projects, demonstrates that industrial artificial intelligence can facilitate smart manufacturing practices effectively.
U2 - 10.1007/978-3-030-66849-5_2
DO - 10.1007/978-3-030-66849-5_2
M3 - Chapter
SN - 9783030668488
SN - 9783030668518
T3 - Springer Series on Advanced Manufacturing
SP - 13
EP - 35
BT - Data driven smart manufacturing technologies and applications
A2 - Li, Weidong
A2 - Liang, Yuchen
A2 - Wang, Sheng
PB - Springer
ER -