Distributed deep learning enabled prediction on cutting tool wear and remaining useful life

Weidong Li, Xiaoyang Zhang, Sheng Wang, Xin Lu, Zhiwen Huang

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud computing architecture. The system is innovative in the following aspects: (i) a lightweight convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge device to assess tool wear conditions efficiently, which supports severe tool resilience and tool replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression mechanism is developed to condense the signals of tooling conditions into 2D images so the signal volumes transferred over the network are minimised and signal security is improved. Experiments were performed in a real-world machining workshop for research methodology validation. It showed that the prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with comparative algorithms demonstrated that the system and its methodology exhibited great potential to reinforce cutting tool optimisation for real-world applications.
Original languageEnglish
Pages (from-to)2203-2213
JournalThe Journal of Engineering Manufacture
Issue number14
Early online date11 Jan 2023
Publication statusPublished - Dec 2023
Externally publishedYes


Dive into the research topics of 'Distributed deep learning enabled prediction on cutting tool wear and remaining useful life'. Together they form a unique fingerprint.

Cite this